Kronecker’s Approximation Theorem and a Sequence of Triangles

نویسندگان

  • Panagiotis T. Krasopoulos
  • P. T. Krasopoulos
چکیده

We investigate the dynamic behavior of the sequence of nested triangles with a fixed division ratio on their sides. We prove a result concerning a special case that was not examined in [1]. We also provide an answer to an open problem posed in [3].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Version of Kronecker’s Theorem on Simultaneous Diophantine Approximation

Kronecker’s theorem states that if 1, θ1, . . . , θn are real algebraic numbers, linearly independent over Q, and if α ∈ R, then for any > 0 there are q ∈ Z and p ∈ Z such that |qθi − αi − pi| < . Here, a bound on q is given in terms of the dimension n, of the precision , of the degree of the θi’s and of their height. A possible connection to the square-root sum problem is discussed.

متن کامل

Seminar in Topology and Actions of Groups. Kronecker Theorem and The Minimality of Certain Flows

In this work we shall prove the so called Kronecker’s Diophantine Approximation Theorem using the minimality of a certain discrete flow on the unit circle T. The work also contains a higher dimension generalization of the theorem to Tn.

متن کامل

On the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators

In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...

متن کامل

A Stochastic Contraction Mapping Theorem

The submartingale convergence theorem is often described as a stochastic analogue to the bounded convergence theorem for monotone sequences of real numbers. We define an alternative process which is a stochastic analogue to an iterative contraction process. A general convergence theorem is presented, with an extension to multivariate processes. The convergence theorem functions in a manner simi...

متن کامل

The Basic Theorem and its Consequences

Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008